Regenerative therapy modalities using Adipose Derived Stem Cells are clinically relevant. Stem cells from fatty tissue that does not require culture and expansion is revolutionary. Previously stem cells were derived from bone marrow which was then cultured to increase stem cell numbers over three to six weeks. The next generation of stem cell treatments involved sending fat samples to outside labs which processed the cells and sent them back with no way of the clinician knowing how many live cells were in the final cell sample. Stem cells that can be processed within a couple of hours and are autologous with little if any chance for adverse reactions represent a paradigm shift for all of medicine. Stem cell therapy for neurologic damage to the spinal cord resulting in loss of deep pain perception has been shown to double the success rate. This doubling of pets that have complete return to function over surgery alone is a substantial reason that every pet with neurologic disease should have stem cells as an adjunct to surgical therapy. The intervertebral disc nucleus pulposus matrix of molecules is largely devoid of cells with cells counts less than 6000 cells per mm2. Very few cells are required to produce the matrix. In fact, too many cells added to the nucleus pulposus matrix will cause death of the cells. The matrix attracts and holds water molecules resulting in a change in the structure of the disc. The disc expands, and this expansion reduces pressure on the spinal cord and restores normal function to the disc. This regeneration of the disc is also paradigm shifting, as many of our previous therapies were designed to destroy the disc by fenestration, laser ablation, etc. Today we can rebuild it within days.
This novel approach must be holistic, encompassing all aspects of diagnosis, treatment, post-operative care and rehabilitation. The following are considered essential skills or assets in this regard:
- MRI is an essential tool to determine the health of the intervertebral disc. When surgery is anticipated, CT scans or Myelograms are great but they cannot tell you the amount of water in a disc. Disc water content is a key indicator for disc degeneration.
- Surgery capability is still an essential tool for those pets with severe compressive disease.
- Stem Cell Processing Laboratory with biological safety cabinet, cell counting, cell viability, cryopreservation and culture capacity. You must know how many live cells you are placing into the tissues. For example, too many cells in the nucleus pulposus will not live.
- C-Arm Fluoroscopy for accurate placement of stem cells into the nucleus pulposus. This can be done without a C-Arm using anatomical guidelines, skill, touch and many many radiographs to confirm needle location but it is not feasible or advisable for most patients.
- Rehabilitation is essential starting the day after the procedure if possible.